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The atomic, nuclear, and particle physics of the
I in matter is quite varied
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MuAtom physics varies widely with Z
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Current experimental understanding of many
aspects of MuAtom physics is not great

What's the spectrum of
secondary particle emission in
nuclear capture events?

Vacuum Right Silicon
Pump Detector Target —
‘l || Triggers:
Lead - MuSc,
shielding - = MuPC

™ |
Muon Veto ”

Scintillator e s /’L
b Collimator
Neutron Left Silicon Germanium
Detector Detector Detector

A E in thin detector [keV]

The situation is so dire
that COMET and MuZ2e
collaborate on AlCap, to
study charged particle
emission from pAl (uTI...)
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The physics of light muonic atoms is
incredibly rich: 'H

DIO and nuclear capture
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The chemical kinetics are pressure and
temperature dependent

® is the densﬂy
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Example kinetics from muon capture on
deuterons: °H

MuSun



MuAtoms can also be transported from the
atomic capture location

» Diffusion processes can move muonic atoms non-
trivial distance

e Recoil can give non-trivial kinetic energy to light
species

 Ramsauer-Townsend effects exist in special cases
(deuterons in protium)



The current implementation of capture at
rest works well within its design limits

e class G4AMuonMinusCapture:
e A subclass of G4HadronStoppingProcess,

which performs all steps of the physics:
e Element selection
e Atomic capture cascade
e Nuclear capture or bound decay

e Attached to GAMuonMinus



The current implementation has a few
shortcomings that we propose to remedy

 Make the muonic atom a first class particle type
e Allows transportable muonic atoms
e Allows to special case the light atoms naturally
e Muonic molecules are a natural extension

e Factorize the process model
e Separate atomic cascade, capture, and DIO physics
into separate processes that can be customized on a

per species basis
« Radiative extensions can be added as for free
radiative muon decays
e Spin dependent physics can be supported
e Impurity transfer and catalyzed fusion

* Provides customization points: add specific model
or data driven processes per species
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Existing (partial) proof of concept from the
9.5 days, written for MuSun

S — e Discussion in 2012
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Schedule

 Fermilab and York/CUNY have proposals to DOE
that support work on this
e Assuming you're happy with us pursuing some

variant of this...
e 2016: introduce MuAtoms and factorize the
physics processes
e 2017: introduce light atom physics
e 2018: radiative corrections (assuming existence of

theory calculations)
 perhaps the molecular physics...
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Additional possibilities

* There are other exotic atoms that may benefit from a

similar approach
e Pionic and kaonic atoms
e Muonium
e Positronium

13



